PRORAČUN STRUJE KVARA PRI POJAVI NESIMETRIČNOG OPTEREĆENJA U OKVIRU SNDM GRADA BEOGRADA

G. ŽIVADINOVIĆ, ODS "EPS Distribucija" d.o.o. Beograd, Srbija D. VUKOTIĆ, ODS "EPS Distribucija" d.o.o. Beograd, Srbija

1. UVOD

U radu se proračunava struja kroz zvezdište transformatora kao i struje i naponi po svim fazama na mestu ugradnje Riklozera, pri kratkim spojevima na različitim mestima duž radijalnog voda, a pri raznim tipovima zemljospoja.

Da bi se istakla suština problema posmatra se radijalni vod kome je opterećenje koncentrisano na kraju voda i za takav slučaj se izvode analitički izrazi, koji se kasnije koriste i za složenije topologije.

Metoda koja se koristi u proračunu se bazira na direktnom pisanju Kirhofovih jednačina na tropolnu ekvivalentnu shemu, bez svodjenja trofaznog nesimetričnog sistema na direktni, inverzni i nulti.

Posmatra se uticaj različitih vrednosti otpornosti izmedju zvezdišta transformatora i zemlje - od direktno uzemljenog do izolovanog zvezdišta. Takodje se analizira uticaj nesimetrije elektrodistributivnog sistema kako po snagama tako i po različitim cos\u03c6 po fazama na struju zvezdišta i na napone i struje u mreži.

U tački 2 su dati obrasci po kojima se izračunavaju aktivne i reaktivne impedanse elemenata u ekvivalentnoj šemi. U tački 3 su izvedeni obrasci za izračunavanje faznih struja za trofaznu nesimetričnu mrežu. Tačka 4 se bavi posebnim slučajem nesimetrije kada se moduli impedansi po fazama jednaki a faktor snage cos\u00f6 je u jednoj fazi različit u odnosu na druge dve faze.

Na konkretnom primeru jedne radijalne mreže sa 11 ogranaka i riklozerom, u tački 5 se izračunavaju naponi i struje riklozera za razne slučajeve kratkih spojeva duž radijalnog voda. U proračunu je moguće menjati sve parametre: dužinu voda, položaj riklozera, udaljenost mesta kvara od rikozera, snagu po fazama, faktor snage po fazama, tipove zemljospoja, impadanse transformatora i nadzemnog voda.

Vrednosti napona i struja (moduli i fazni stavovi) na mestu ugradnje riklozera a pri kvaru u bilo kom delu radijalne mreže mogu poslužiti za pravilno prepoznavanje i tumačenje vrste dogadjaja (kvarova) u "Event Log" listi riklozera u vazdušnoj mreži.

U radu se pod terminom nulta struja podrazumeva vektorski zbir tri fazne struje nesimetričnog trofaznog sistema, koja je jednaka nuli pri neuravnoteženom sistemu bez kvara, a različita od nule samo pri kvaru u direktno ili indirektno uzemljenoj mreži.

2. UPROŠĆEN SLUČAJ RADIJALNOG VODA

Posmatra se jedan 10kV nadzemni vod podužne reaktanse $x_v \left[\Omega/km\right]$, napajan iz TS 110(35)/10kV. Radi jednostavnijeg računa je celokupno opterećenje voda $R_{pe} + jX_{pe}$ svedeno na njegov kraj, radi jednostavnijeg postavljanja matematičkog modela. Na radijalnom vodu se nalazi riklozer. Zvezdište transformatora 110(35)/10,5kV je uzemljeno preko otpornika R_0 , Slika-1.

Slika 1 - Radijalni vod sa riklozerom i svedenim opterećenem na kraju voda

Poznate su dužine nadzemnog voda od izvorišne ćelije do riklozera, od riklozera do mesta kvara, kao i od mesta kvara do kraja voda.

Ekvivalentna tropolna shema je prikazana na Slici-2. Reaktivne i aktivne otpornosti potrebne za dobijanje impedansi naznačenih u šemi se računaju po obrascima:

1. Reaktansa transformatora svedena na 10kV stranu

$$X_{t(\Omega)} = \frac{x_{t\%}}{100} \ \frac{U_{lin(kV)}^2}{S_{n(MVA)}}$$

gde je U_{lin} , nominalan linijski napon (10kV), a $X_{t(\%)}$, procentualna reaktansa kratkog spoja transformatora. 2. Aktivna otpornost transformatora:

$$R_{t(\Omega)} = \frac{P_{cu(W)}U_{lin(kV)}^2}{S_{nt(kVA)}^2}$$

3. Aktivna i reaktivna otpornost voda $R_{v(\Omega)}$, X_v se računaju

$$R_{\nu} = r_{\nu\left(\frac{\Omega}{km}\right)} L_{\nu(km)}, \qquad X_{\nu} = x_{\nu\left(\frac{\Omega}{km}\right)} L_{\nu(km)}$$

gde $x_{v(\frac{\Omega}{km})}$ označava ekvivalentnu podužnu reaktansusu simetričnog voda, (razliku sopstvene i medjusobne), koja se usvaja kao tipična vrednost za dati nadzemni vod.

4. Aktivna i reaktivna otpornost jedne faze potrošnje skoncentrisane na kraju voda se računaju prema nominalnoj aktivnoj i reaktivnoj snazi svedenoj na 10kV naponski nivo, uz prethodno svodjenje impedansi potrošača vezanih u trougao u ekvivalentnu zvezdu, čije zvezdište nije uzemljeno.

$$R_{p(\Omega)} = \frac{1}{3} \frac{10^5}{S_{pf(kVA)} \cos \varphi}, \quad X_{p(\Omega)} = \frac{1}{3} \frac{10^5}{S_{pf(kVA)} \sqrt{1 - \cos \varphi^2}}$$

gde je $\cos \varphi$ faktor snage jedne faze potrošnje, a $S_{pf(kVA)}$ prividna snaga jedne faze potrošnje u (kVA), pri čemu su aktivna i reaktivna otpornost vezane paralelno, jer su svedene na isti napon. Ako se impedansa potrošača prikaže kao redna veza aktivne i reaktivne otpornosti one se računaju po izrazima

$$R_{pe} = \frac{R_p X_p^2}{R_p^2 + X_p^2}, \quad X_{pe} = \frac{X_p R_p^2}{R_p^2 + X_p^2}, \qquad \underline{Z}_{pe} = \frac{R_p X_p^2}{R_p^2 + X_p^2} + j \frac{X_p R_p^2}{R_p^2 + X_p^2}$$

3. IZRAZ ZA FAZNE STRUJE I STRUJU KVARA PRI JEDNOFAZNOM ZEMLJOSPOJU

Slika-2. Tropolna šema

Ako se uvedu sledeće oznake za impedanse \underline{Z}_{a} , \underline{Z}_{b} i \underline{Z}_{c} , definisane kao:

 $\underline{Z}_{a} = \left(\underline{Z}_{t} + \underline{Z}_{avv}\right) + \left(\underline{Z}_{avp} + \underline{Z}_{apY}\right) = \underline{Z}_{av} + \underline{Z}_{ap}$ (1) $\underline{Z}_{b} = \left(\underline{Z}_{t} + \underline{Z}_{bvv}\right) + \left(\underline{Z}_{bvp} + \underline{Z}_{bpY}\right) = \underline{Z}_{bv} + \underline{Z}_{bp}$ (2) $\underline{Z}_{c} = (\underline{Z}_{t} + \underline{Z}_{cvv}) + (\underline{Z}_{cvp} + \underline{Z}_{cpY}) = \underline{Z}_{cv} + \underline{Z}_{cp}$ (3)

pri čemu je \underline{Z}_t - impedansa transformatora, \underline{Z}_{avv} - impedansa voda faze A do mesta kvara, \underline{Z}_{avp} - impedansa voda od mesta kvara do kraja voda, \underline{Z}_{apy} - ekvivalentna impedansa faze A potrošača, i tako respektivno za faze B i C, mogu se postaviti sledeće jednačine po I i II Kirhofovom zakonu:

$$-\underline{E}_{c} + \underline{Z}_{c}\underline{I}_{c} - \underline{Z}_{b}\underline{I}_{b} + \underline{E}_{b} = 0 \quad (4)$$
$$-\underline{E}_{b} + \underline{Z}_{b}\underline{I}_{b} - \underline{Z}_{ap}\underline{I}_{ap} - \underline{Z}_{av}\underline{I}_{av} + \underline{E}_{a} = 0 \quad (5)$$
$$-\underline{E}_{a} + \underline{Z}_{av}\underline{I}_{av} + (\underline{Z}_{k} + R_{0})(\underline{I}_{o}) = 0 \quad (6)$$

pri čemu je

$$-\underline{I}_{ap} = (\underline{I}_{b} + \underline{I}_{c}), \ \underline{I}_{o} = \underline{I}_{av} + \underline{I}_{b} + \underline{I}_{c} \quad (7)$$
$$\underline{E}_{a} = Ee^{j0} = E$$
$$(1 \quad \sqrt{3})$$

$$\underline{E}_{b} = \underline{a}^{2} \underline{E}_{a} == \left(-\frac{1}{2} - j\frac{\sqrt{3}}{2}\right) E$$
$$\underline{E}_{c} = \underline{a} \underline{E}_{a} = \left(-\frac{1}{2} + j\frac{\sqrt{3}}{2}\right) E$$

 \underline{Z}_k - impedansa kvara jednofaznog zemljospoja, R_0 - otpornost uzemljenja zvezdišta transformatora u TS X/10kV. Rešenje sistema jednačina (4)-(5)-(6) sa uslovima (7) je:

$$\underline{I}_{av} = \frac{\left(\underline{Z}_{k} + R_{0}\right)\left(\underline{Z}_{b}(\underline{E}_{A} - \underline{E}_{C}) + \underline{Z}_{c}(\underline{E}_{A} - \underline{E}_{B})\right) + \left(\underline{Z}_{ap}(\underline{Z}_{b} + \underline{Z}_{c}) + \underline{Z}_{c}\underline{Z}_{b})\underline{E}_{A}}{\left(\underline{Z}_{k} + R_{0} + \underline{Z}_{av}\right)\left(\underline{Z}_{ap}(\underline{Z}_{b} + \underline{Z}_{c}) + \underline{Z}_{c}\underline{Z}_{b}\right) + \underline{Z}_{av}(\underline{Z}_{k} + R_{0})(\underline{Z}_{b} + \underline{Z}_{c})} \quad (8)$$

$$\underline{I}_{b} = \frac{\left(\underline{Z}_{k} + R_{0} + \underline{Z}_{av}\right)\left(\underline{Z}_{ap}(\underline{E}_{B} - \underline{E}_{c}) + \underline{Z}_{c}(\underline{E}_{B} - \underline{E}_{A})\right) + \underline{Z}_{av}(\underline{Z}_{k} + R_{0})(\underline{E}_{B} - \underline{E}_{c}) + \underline{Z}_{c}\underline{Z}_{av}\underline{E}_{A}}{\left(\underline{Z}_{k} + R_{0} + \underline{Z}_{av}\right)\left(\underline{Z}_{ap}(\underline{Z}_{b} + \underline{Z}_{c}) + \underline{Z}_{c}\underline{Z}_{b}\right) + \underline{Z}_{av}(\underline{Z}_{k} + R_{0})(\underline{Z}_{b} + \underline{Z}_{c})} \quad (9)$$

$$\underline{I}_{c} = \frac{\left(\underline{Z}_{k} + R_{0} + \underline{Z}_{av}\right)\left(\underline{Z}_{ap}(\underline{E}_{c} - \underline{E}_{B}) + \underline{Z}_{b}(\underline{E}_{c} - \underline{E}_{A})\right) + \underline{Z}_{av}(\underline{Z}_{k} + R_{0})(\underline{E}_{c} - \underline{E}_{B}) + \underline{Z}_{b}\underline{Z}_{av}\underline{E}_{A}}{\left(\underline{Z}_{k} + R_{0} + \underline{Z}_{av}\right)\left(\underline{Z}_{ap}(\underline{Z}_{b} + \underline{Z}_{c}) + \underline{Z}_{c}\underline{Z}_{b}\right) + \underline{Z}_{av}(\underline{Z}_{k} + R_{0})(\underline{Z}_{b} + \underline{Z}_{c})}$$
(10)

U slučaju kada nema zemljospoja, $|\underline{Z}_k| = \infty$, i/ili izolovano zvezdište transformatora, $R_0 = \infty$, prethodni izrazi se svode na:

$$I_{a} = \frac{\underline{Z}_{b}(\underline{E}_{A} - \underline{E}_{C}) + \underline{Z}_{c}(\underline{E}_{A} - \underline{E}_{B})}{\underline{Z}_{a}(\underline{Z}_{b} + \underline{Z}_{c}) + \underline{Z}_{c}\underline{Z}_{b}}$$
(11)
$$I_{b} = \frac{\underline{Z}_{a}(\underline{E}_{B} - \underline{E}_{c}) + \underline{Z}_{c}(\underline{E}_{B} - \underline{E}_{A})}{\underline{Z}_{a}(\underline{Z}_{b} + \underline{Z}_{c}) + \underline{Z}_{c}\underline{Z}_{b}}$$
(12)
$$I_{c} = \frac{\underline{Z}_{a}(\underline{E}_{c} - \underline{E}_{B}) + \underline{Z}_{b}(\underline{E}_{c} - \underline{E}_{A})}{\underline{Z}_{a}(\underline{Z}_{b} + \underline{Z}_{c}) + \underline{Z}_{c}\underline{Z}_{b}}$$
(13)

Sabiranjem izraza (11), (12) i (13) se dobija da je nulta struja jednaka nuli, $\underline{I}_o = \underline{I}_a + \underline{I}_b + \underline{I}_c = 0$. Dakle, potvrdjuje se poznata činjenica da je nulta struja jednaka nuli ako nema kvara prema zemlji.

Ako se pretpostavi da je mreža simetrična, $\underline{Z}_a = \underline{Z}_b = \underline{Z}_c = \underline{Z}$, sva tri prethodna izraza se redukuju na

$$\underline{I}_a = \frac{\underline{E}_a}{\underline{Z}}, \qquad \underline{I}_b = \frac{\underline{E}_b}{\underline{Z}} = \underline{a}^2 \underline{I}_a, \qquad \underline{I}_c = \frac{\underline{E}_c}{\underline{Z}} = \underline{a}I_a$$

Iz izraza (8), (9) i (10) sabiranje dobijamo nultu struju u opštem slučaju, $\underline{Z}_a \neq \underline{Z}_b \neq \underline{Z}_c$, $|\underline{Z}_k| + R_0 \neq 0$

$$\underline{I}_{o} = \frac{\underline{Z}_{av}\underline{Z}_{c}\underline{E}_{B} + \underline{Z}_{av}\underline{Z}_{b}\underline{E}_{c} + \underline{Z}_{ap}(\underline{Z}_{b} + \underline{Z}_{c})\underline{E}_{A} + \underline{Z}_{c}\underline{Z}_{b}\underline{E}_{A}}{(\underline{Z}_{k} + R_{0} + \underline{Z}_{av})(\underline{Z}_{ap}(\underline{Z}_{b} + \underline{Z}_{c}) + \underline{Z}_{c}\underline{Z}_{b}) + \underline{Z}_{av}(\underline{Z}_{k} + R_{0})(\underline{Z}_{b} + \underline{Z}_{c})}$$

koja u slučaju direktnog jednofaznog zemljospoja uravnotežene direktno uzemljene mreže, $(|\underline{Z}_k| + R_0) = 0$ postaje

$$\underline{I}_{o} = \frac{(3\underline{Z} - 3\underline{Z}_{av})\underline{E}_{a}}{\underline{Z}_{av}(3\underline{Z} - 2\underline{Z}_{av})}, |\underline{Z}_{k}| + R_{0} = 0, (\underline{Z}_{av} + \underline{Z}_{ap}) = \underline{Z}_{a} = \underline{Z}_{b} = \underline{Z}_{c} = \underline{Z}$$

Iz poslednjeg izraza je za simetričnu mrežu, moguće formirati količnik struje zemljospoja pri kvaru iz radnog režima i struje zemljospoja pri kvaru iz praznog hoda, (bez tereta):

$$\frac{\underline{I}_{\rho}}{\underline{I}_{\rho(ph)}} = \frac{\left(3\underline{Z} - 3\underline{Z}_{av}\right)}{\left(3\underline{Z} - 2\underline{Z}_{av}\right)},$$

koji pokazuje da je $|\underline{I}_o| < |\underline{I}_{o(ph)}|$. Numerički podaci pokazuju da je ovo smanjenje ipak neznatno. Smanjenje je izrazitije pri dužem vodu, većem teretu i nepovoljnijem faktoru snage.

4. ANALIZA DOBIJENIH REZULTATA ZA NEKE SPECIFIČNE SLUČAJEVE

4.1. Režim bez kvara sa nesimetrijom po uglu u samo jednoj fazi i jednakim modulima faznih impedansi

Interesantan slučaj primene obrazaca (11) do (13) je kada za neuravnoteženu mrežu u samo jednoj fazi i to po faktoru snage, pri čemu su moduli impedansi u sve tri faze jednaki

$$\cos \phi_b = \cos \phi_c = \cos \phi \neq \cos \phi_a$$
$$\underline{Z}_b = \underline{Z}_c = \underline{Z} \neq \underline{Z}_a,$$
$$|\underline{Z}_a| = |\underline{Z}_b| = |\underline{Z}_c| = |\underline{Z}| = Z$$

Mogu se izračunati sledeći koeficijenti definisani u kompleksnom domenu kao:

$$\underline{K}_{a} = \frac{\underline{I}_{a}}{\underline{I}_{sim}}, \qquad \underline{K}_{b} = \frac{\underline{I}_{b}}{\underline{I}_{sim}}, \qquad \underline{K}_{c} = \frac{\underline{I}_{c}}{\underline{I}_{sim}}, \qquad \underline{I}_{sim} = \frac{\underline{E}_{a}}{\underline{Z}} = \frac{E}{Z}$$
 (14)

koji predstavljaju količnike struja u fazama A, B i C i pretpostavljene struje u simetričnom sistemu. Ako sa $\Delta \phi$ označimo faznu razliku impedanse faze A prema impedansama faza B i C, $\underline{Z}_a = Ze^{j\Delta\phi}$, $\underline{Z}_b = Z$, $\underline{Z}_c = Z$, moduli ovih kompleksnih koeficijenata su

$$K_{a} = \frac{3}{\sqrt{5 + 4\cos\Delta\phi}} \quad (15)$$

$$K_{b} = \frac{\sqrt{6 - 3\sqrt{3}\sin\Delta\phi + 3\cos\Delta\phi}}{(\sqrt{5 + 4\cos\Delta\phi})} = \frac{\sqrt{6 - 3\sqrt{3(1 - \cos^{2}\Delta\phi)} + 3\cos\Delta\phi}}{(\sqrt{5 + 4\cos\Delta\phi})} \quad (16)$$

$$K_{c} = \frac{\sqrt{6 + 3\sqrt{3}\sin\Delta\phi + 3\cos\Delta\phi}}{\sqrt{5 + 4\cos\Delta\phi}} = \frac{\sqrt{6 + 3\sqrt{3(1 - \cos^{2}\Delta\phi)} + 3\cos\Delta\phi}}{\sqrt{5 + 4\cos\Delta\phi}} \quad (17)$$

Sva tri izraza u slučaju da nema nesimetrije, tj. $\Delta \phi = 0$, $\cos \Delta \phi = 1$, postaju $K_a = K_b = K_c = 1$. Za promene ugla impedanse faze A od 0° do 30° su u Tabeli-1 date vrednosti modula koeficijenata.

ΔΦ	cos∆Φ	Ka	K _b	K _c
0°	1	1,00	1,00	1,00
5°	1,00	1,00	0,97	1,03
10°	0,98	1,00	0,95	1,05
15°	0,97	1,01	0,92	1,07
20°	0,94	1,01	0,90	1,10
25°	0,91	1,02	0,87	1,12
30°	0,87	1,03	0,84	1,15

Tabela-1. Zavisnost koeficijenata od ugla

U drugoj koloni tabele je dat kosinus faznog pomaka, (kosinus argumenta impedanse faze A), koji u slučaju da su impedanse u fazama B i C aktivne, postaje faktor snage faze A u kojoj je nesimetrija. Za male uglove $\Delta \phi$ do 30° je zbir koeficijenata $K_a + K_b + K_c \approx 3$, tj moduli faznih struja su takvi da obezbedjuju da je vektorski zbir triju faznih struja jednak nuli, $I_a + I_b + I_c = 0$. Struja u fazi B se smanjuje a struja u fazi C raste, što uz neznatnu promenu struje faze A daje nultu struju jednaku nuli. Na primer za $\Delta \phi = 20^{\circ}$, što odgovara uslovima $cos\phi_a = 0.94$, $cos\phi_b = cos\phi_c = 1$, je struja u fazi B približno manja za 10% od struja faze A, a struja faze C je 10% veća od struje faze A.

Na Slici-3 je prikazana zavisnost svakog od koeficijenata K_a, K_b, K_c u funkciju ugla $\Delta \phi$ u stepenima, za opseg od 0° do 90°.

 K_a, K_b, K_c u funkciji promene argumenta impedanse samo jedne faze. U drugim dvema fazama je cos $\phi=1$.

5. BROJČANI PRIMER

5.1. Radijalni vod sa opterećenjem na kraju voda

Obrasci (8), (9) i (10) se mogu direktno primenjivati kada je celokupno opterećenje skoncentrisano kao ekvivalentno na kraju voda, kao na Slici-1. Dužine deonica su $L_1 = 2,85$ km od ćelije do riklozera, $L_2 = 0,68$ km, od riklozera do mesta kvara, i $L_3 = 1,7$ km, od mesta kvara do kraja voda. Rezultati izračunavanja su prikazani u Tabeli-2.

Za simetričnu uzemljenu mrežu bez kvara struje i naponi su jednaki po modulu. Za nesimetričnu uzemljenu mrežu bez kvara struje po fazama se razlikuju, naponi neznatno. U simetričnoj uzemljenoj mreži sa kvarom otpora $0,1\Omega$, struje po fazama se razlikuju i pojavljuje se nulta struja. Napon riklozera na fazi A pod kvarom je 1,00 kV. Kod simetrične izolovane mreže sa kvarom je napon faze A na riklozeru 0,03 kV, a medjufazni naponi su po modulu jednaki.

Simetrična, uzemljena mreža		Nesimetrična, izolovana				metrična,	uzemljena	Simetrična izolovana mreža sa				
bez kvara		mreža bez kvara				mreža sa	kvarom	kvarom				
$Ro = 0\Omega$		$Ro = 0\Omega$			Ro	$= 0\Omega$		Ro :	$\Omega \infty =$			
Rk	$\Omega \infty =$		Rk	$\Omega \infty =$		Rk	= 0,1Ω		$Rk = 0,1\Omega$			
	Pa	422 kVA		Pa	319,0 kVA		Pa	422 kVA		Pa	422 kVA	
ЩЩ	Pb	422 kVA	ΞĤ	Pb	309,8 kVA	田田	Pb	422 kVA	ΞĔ	Pb	422 kVA	
Ç, K	Pc	422 kVA	ĊŊ	Pc	321,6 kVA	ČIN	Pc	422 kVA	ČĪŅ	Pc	422 kVA	
LI LI	cosøa	0,99	LA	cosøa	0,95	LA	cosøa	0,99	ULA. VELI	cosøa	0,99	
ΠË	cosøb	0,99	UE	cosøb	0,95	53	cosøb	0,99		cosøb	0,99	
	cos¢c	0,99		cos¢c	0,96		cos¢c	0,99		cos¢c	0,99	
	Ia	75,00 A		Ia	57,10 A		Ia	2322,37 A		Ia	75,00 A	
Ξ	Ib	75,00 A	E	Ib	55,24 A	Æ	Ib	65,60 A	E	Ib	75,00 A	
E.	Ic	75,00 A	CID.	Ic	56,84 A	CH	Ic	66,88 A	CID	Ic	75,00 A	
LIC	Io	0,00 A	LIG	Io	0,00 A	LIG	Io	2307,11 A	LIG	Io	0,00 A	
VE	Ua	5,98 kV	VE	Ua	5,982 kV	VE	Ua	1,00 kV	VE	Ua	0,03 kV	
Ë	Ub	5,98 kV	Ē	Ub	5,986 kV	Ē	Ub	6,03 kV	Έ	Ub	10,34 kV	
Ŕ	Uc	5,98 kV	Z	Uc	5,986 kV		Uc	5,95 kV	NZ	Uc	10,35 kV	
ΓA	Uab	10,36 kV	ΓA	Uab	10,36 kV	LA	Uab	6,38 kV	LA	Uab	10,36 kV	
ZI	Uba	10,36 kV	IZ	Uba	10,37 kV	IZ	Uba	10,36 kV	IZ	Uba	10,36 kV	
	Uca	10,36 kV		Uca	10,36 kV		Uca	6,69 kV		Uca	10,36 kV	

Tabela-2. Radijalni vod sa teretom na kraju voda

5.2. Radijalni vod sa ograncima

Opisani postupak sa izrazima (8), (9) i (10), uz korišćenje metode "rešetke" ("Ladder Method", [4]) se može primeniti za izračunavanje raspodele napona i struja za distributivnu 10kV mrežu. Koristiće se konkretna mreža sa izolovanim zvezdištem napajana iz TS 35kV/10kV "Mobilna (300), Padinska Skela" – ćelija 5. Na Slici-4 je jednopolno prikazana radijalna mreža sa 11 ogranaka sa dužinama pojedinih deonica i ogranaka u kilometrima. Snage i faktori snage po pojedinim čvorovima/ograncima su date tabelarno, jer su to veličine koje se mogu menjati u proračunu.

Slika-4. Radijalna 10kV mreža Riklozera RC-406. Strelicom je prikazano mesto kvara u rasponu 5-6

Posebno je interesantno izračunati napone i struje u sve tri faze na mestu ugradnje riklozera RC-406 u slučaju raznih tipova zemljospoja (jednopolni, dvopolni, itd.) na raznim lokacijama duž nadzemnog voda, jer se dobijeni rezultati mogu uporediti sa podacima koji se nalaze u "Event Log" - tabeli riklozera, gde se beleže izmerene veličine.

Tabela-4. Ulazni parametri proračuna	
Linijski napon napojne ćelije u TS 35kV/10kV	10,5kV
Nazivna snaga transformatora 35kV/10,5kV	10MVA
Napon kratkog spoja transformatora 35kV/10,5kV	5,80%
Nazivni gubici u bakru transformatora 35kV/10,5kV	44,98kW
Presek AL/Če užeta	70mm ²
Podužna reaktansa vodova	0,5Ω/km

R	$\Omega = 0$			r	Fabela-5	5. Direktn	o uzeml	jena sim	etrična	mreža b	ez kvara	l		
R	$k = \infty \Omega$	ogr11	ogr10	ogr9	ogr8	RC406	ogr7	ogr6	kvar	ogr5	ogr4	ogr3	ogr2	ogr1
	Pa (kVA)	30,0	20,0	50,0	35,0		60,0	100,0	$\Omega\infty$	100,0	50,0	70,0	40,0	50,0
日田	Pb (kVA)	30,0	20,0	50,0	35,0		60,0	100,0		100,0	50,0	70,0	40,0	50,0
Ç, Z	Pc (kVA)	30,0	20,0	50,0	35,0		60,0	100,0		100,0	50,0	70,0	40,0	50,0
LA	cosφa	0,98	0,97	0,97	0,99		0,99	0,97		0,98	0,97	0,96	0,98	0,99
DB	cosφb	0,98	0,97	0,97	0,99		0,99	0,97		0,98	0,97	0,96	0,98	0,99
	cosφc	0,98	0,97	0,97	0,99		0,99	0,97		0,98	0,97	0,96	0,98	0,99
	Ia (A)	96,8	91,9	88,7	80,7	75,0	75,0	65,5	49,4	49,4	33,5	25,5	14,4	8,0
A	Ib (A)	96,8	91,9	88,7	80,7	75,0	75,0	65,5	49,4	49,4	33,5	25,5	14,4	8,0
EN	Ic (A)	96,8	91,9	88,7	80,7	75,0	75,0	65,5	49,4	49,4	33,5	25,5	14,4	8,0
TA7	Ua (kV)	5,94	5,93	5,93	5,92	5,89	5,89	5,89	5,88	5,87	5,87	5,87	5,87	5,87
Зž	Ub (kV)	5,94	5,93	5,93	5,92	5,89	5,89	5,89	5,88	5,87	5,87	5,87	5,87	5,87
REZ	Uc (kV)	5,94	5,93	5,93	5,92	5,89	5,89	5,89	5,88	5,87	5,87	5,87	5,87	5,87
	Uab (kV)	10,30	10,27	10,26	10,25	10,21	10,20	10,20	10,18	10,17	10,17	10,16	10,16	10,16
	Ubc (kV)	10,30	10,27	10,26	10,25	10,21	10,20	10,20	10,18	10,17	10,17	10,16	10,16	10,16
	Uca (kV)	10,30	10,27	10,26	10,25	10,21	10,20	10,20	10,18	10,17	10,17	10,16	10,16	10,16

Tabela-5. Direktno uzemljena simetrična mreža bez kvara.

U Tabeli-5 su prikazane izračunate vrednosti napona i struja u svim rasponima i ograncima i za mesto ugradnje riklozera za simetričan sistem. Uradjen je proračun za uzemljenu mrežu, $R_0=0\Omega$. Zbog uravnoteženosti vrednosti

napona i struja po fazama su jednake. Ekvivalentan teret na kraju voda iz Tabele-2 je odabran tako da su fazne struje na mestu ugradnje riklozera 75A, jednake onim u Tabeli-5. U Tabeli-2 su vrednosti faznih i medjufaznih napona nešto veće (oko 1,5%) nego u Tabel-5. Tabela-6 obradjuje slučaj izolovane nesimetrične mreže bez kvara. Ekvivalentan teret na kraju voda iz Tabele-2 obezbedjuje približno jednake struje po fazama kao i u mreži sa ograncima. Izračunati naponi iz Tabele-6 za mrežu sa ograncima se neznatno razlikuju od onih izračunatih direktnom primenom obrazaca (8)-(9)-(10).

R	$\Omega \infty = 0.0$		Tabela-6. Izolovana nesimetrična mreža riklozera RC-406 bez kvara											
R	$k = \infty \Omega$	ogr11	ogr10	ogr9	ogr8	RC406	ogr7	ogr6	kvar	ogr5	ogr4	ogr3	ogr2	ogr1
	Pa (kVA)	30,0	20,0	50,0	35,0		60,0	60,0	$\Omega\infty$	55,0	45,0	41,0	44,0	50,0
ШЩ	Pb (kVA)	30,0	20,0	50,0	35,0		60,0	60,0		55,0	45,0	30,0	41,0	50,0
ČĪŅ	Pc (kVA)	30,0	20,0	50,0	35,0		60,0	60,0		55,0	45,0	41,0	48,0	50,0
LA	cosφa	0,98	0,95	0,95	0,95		0,95	0,95		0,95	0,95	0,95	0,95	0,95
U	cosφb	0,95	0,95	0,95	0,95		0,95	0,95		0,95	0,95	0,95	0,95	0,95
	cosφc	0,95	0,95	0,95	0,95		0,96	0,96		0,96	0,96	0,96	0,96	0,96
	Ia (A)	78,9	74,1	70,8	62,7	57,1	57,1	47,4	0,0	37,7	28,9	21,7	15,1	8,0
A.	Ib (A)	76,9	72,0	68,8	60,7	55,0	55,0	45,3	0,0	35,6	26,7	19,5	14,7	8,1
II	Ic (A)	78,6	73,8	70,6	62,6	57,0	57,0	47,5	0,0	37,9	29,2	22,0	15,5	7,9
TA' AV/	Ua (kV)	5,97	5,95	5,95	5,95	5,92	5,92	5,92	5,91	5,91	5,90	5,90	5,90	5,90
	Ub (kV)	5,99	5,97	5,97	5,96	5,94	5,94	5,94	5,93	5,93	5,92	5,92	5,92	5,92
EZ	Uc (kV)	5,90	5,88	5,88	5,87	5,85	5,85	5,85	5,84	5,84	5,83	5,83	5,83	5,83
R IZRA	Uab (kV)	10,30	10,28	10,27	10,26	10,22	10,22	10,22	10,20	10,19	10,19	10,19	10,18	10,18
	Ubc (kV)	10,31	10,29	10,28	10,27	10,24	10,23	10,23	10,22	10,21	10,21	10,20	10,20	10,20
	Uca (kV)	10,30	10,28	10,27	10,26	10,23	10,22	10,22	10,21	10,19	10,19	10,19	10,18	10,18

Tabela-6. Riklozer RC-406. Izolovana nesimetrična mreža bez kvara.

R	$\Omega \propto = 0$	Tabela-7. Izolovana mreža riklozera RC-406. Zemljospoj u fazi "a"												
$Rk = 0,1\Omega$		ogr11	ogr10	ogr9	ogr8	RC406	ogr7	ogr6	kvar	ogr5	ogr4	ogr3	ogr2	ogr1
E	Pa (kVA)	30,0	20,0	50,0	35,0		60,0	60,0	0,1Ω	55,0	45,0	41,0	44,0	50,0
	Pb (kVA)	30,0	20,0	50,0	35,0		60,0	60,0		55,0	45,0	30,0	41,0	50,0
Ç, Z	Pc (kVA)	30,0	20,0	50,0	35,0		60,0	60,0		55,0	45,0	41,0	48,0	50,0
LA	cosφa	0,98	0,95	0,95	0,95		0,95	0,95		0,95	0,95	0,95	0,95	0,95
DE	cosφb	0,95	0,95	0,95	0,95		0,95	0,95		0,95	0,95	0,95	0,95	0,95
	cosφc	0,95	0,95	0,95	0,95		0,96	0,96		0,96	0,96	0,96	0,96	0,96
	Ia (A)	78,9	78,9	78,8	78,8	78,7	78,7	78,7	78,6	0,1	0,0	0,0	0,0	0,0
A	Ib (A)	76,9	72,0	68,8	60,7	55,0	55,0	45,3	0,0	35,6	26,7	19,5	14,7	8,1
E N	Ic (A)	78,6	73,8	70,6	62,6	57,0	57,0	47,5	0,0	37,9	29,2	22,0	15,5	7,9
TA' AV/	Ua (kV)	0,027	0,029	0,029	0,030	0,034	0,035	0,035	0,037	0,037	0,037	0,037	0,037	0,037
ЫŸ	Ub (kV)	10,51	10,50	10,50	10,50	10,49	10,49	10,49	10,49	10,49	10,49	10,48	10,48	10,48
ľČľ	Uc (kV)	10,26	10,24	10,23	10,23	10,20	10,19	10,19	10,18	10,17	10,17	10,17	10,16	10,16
R IZRA	Uab (kV)	10,30	10,27	10,27	10,26	10,21	10,20	10,20	10,18	10,18	10,17	10,17	10,17	10,17
	Ubc (kV)	10,31	10,29	10,28	10,27	10,24	10,23	10,23	10,22	10,21	10,21	10,20	10,20	10,20
	Uca (kV)	10,30	10,28	10,27	10,26	10,22	10,22	10,21	10,20	10,19	10,19	10,18	10,18	10,18

Tabela-7. Riklozer RC-406. Izolovana mreža. Zemljospoj u fazi "A".

Nesimetrija u Tabeli-6 se pojavljuje u snagama i faktorima snage u ograncima 2, 3, u ograncima 4, 5, 6 i 7 samo po faktoru snage u fazi C, dok je opterećenje u ostalim ograncima uravnoteženo. Vidi se da se dobijaju neznatno različite vrednosti za struje i napone po fazama, koje odgovaraju zadatom stepenu neuravnoteženosti. Razlika u strujama po fazama je znatnija u ograncima sa nesimetrijom, dok je u čvorovima sa većim rednim brojem, bližim izvorišnoj TS X/10kV, ona manja.

Tabela-7 prikazuje vrednosti struja i napona po fazama izolovane mreže na Slici-4 sa jednofaznim zemnljospojem $(0,1\Omega)$ u fazi A. Napon faze "pogodjene" kvarom je 0,034kV kod riklozera, dok druga dva fazna napona iznose Ub=10,49kV, Uc=10,20kV. Interesantno je uočiti poznatu činjenicu da u izolovanoj mreži sa jednofaznim zemljospojem se linijski naponi ne menjeju u odnosu na pogonske vrednosti pre kvara. Istovremeno kod jednofaznog zemljospoja fazni naponi "zdravih" faza postaju po modulu bliski medjufaznim.

Izračunate vrednosti faznih struja i napona riklozera se poklapaju sa greškom u opsegu +/- 10% u odnosu na izmerene vrednosti na riklozeru RC-406, (System Status-Kartica, 07/03/2016, 12:52:42 PM).

Na Slici-5 je prikazan dijagram izmerenih vrednosti na Riklozeru RC-406, (Fault Records, "Tavrida-Telus", 04/03/2016 1:58:02:876 PM). Uočava se nesimetrija u faznim strujama u trenutku pojave kvara i porast nulte struje kao posledica nesimetrije. Vidi se da napon faze u zemljospoju, (crna traka) "propada" za razliku od napona "zdravih" faza. Linijski naponi se bitno ne menjaju pri jednofaznom zemljospoju.

Usled nedostatka prostora ne može se sprovesti izračunavanje i analiza za sve moguće slučajeve kvarova u mreži, kako po tipu kvara i mestu kvara, tako i za razne vrednosti otpora zvezdišta i kvara.

Slika-5. Dijagram kvara za RC-406 na osnovu izmerenih vrednosti. (Fault Records, "Tavrida-Telus", 04/03/2016 1:58:02:876 PM).

6. ZAKLJUČAK

Korišćenje metode direktne primene Kirhofovih zakona na trofaznu mrežu, bez svodjenja nesimetričnog sistema na direktne, inverzne i nulte komponente, omogućava neposredno izračunavanje trofaznih napona i struja u bilo kojoj grani i čvorištu mreže, sa uzimanjem u obzir nesimetrije u radnom režimu mreže kao početnog stanja pri proračunu kratkih spojeva. Napravljen je program koji po ovom postupku računa naponske i strujne prilike u mreži proizvoljne topologije i parametara. Račun je moguće sprovesti za idealno simetričnu mrežu kao i za nesimetričnu, uzrokovanu neuravnoteženim konzumom i/ili nesimetrijom koja je posledica kvara, i to menjajući opretećenje i faktore snaga po fazama, što se pri korišćenju direktnog, inverznog i nultog redosleda obično ne koristi. Za neke specijalne slučajeve nesimetrije, kao na primer nesimetrija po faktoru snage u samo jednoj fazi su izvedeni dodatni obrasci koji pokazuju raspodelu struja po fazama. Nedostatak prostora je ograničio brojčanu prezentaciju svih slučajeva nesimetrije i kvarova.

7. LITERATURA

- [1] William H. Kersting, "Distribution System Modeling and Analysis", CRC Press, 2002,
- [2] F. Kiessling/P. Nefzger/J. F. Nolasco/U. Kaintzyk, "Overhead Power Lines", New York, 2002.
- [3] J. D. Glover/M. Sarma, "Power System Analysis and Design", PWS-Kent Publishing, Boston, 1994.
- [4] Hugh Skilling, "Electric Network", John Wiley & Sons, 1974,
- [5] Jovan Nahman, "Uzemljenje neutralne tačke distributivnih mreža", Naučna Knjiga, 1980
- [6] E. Clark "Circuit Analysis of AC Power Systems", John Wiley & Sons, New York, 1950.